LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Immune Defense Mechanism of Reticulitermes chinensis Snyder (Blattodea: Isoptera) against Serratia marcescens Bizio

Photo by actuallyjoel from unsplash

Simple Summary Reticulitermes chinensis Snyder is the most important pest in China. Serratia marcescens (SM1) can infect insects. In our lab, we found that SM1 can kill R. chinensis. However,… Click to show full abstract

Simple Summary Reticulitermes chinensis Snyder is the most important pest in China. Serratia marcescens (SM1) can infect insects. In our lab, we found that SM1 can kill R. chinensis. However, the mechanisms underlying the immune defense of R. chinensis against SM1 is unknown. Therefore, understanding the interaction between R. chinensis and SM1 is important for termite control. In this study, immune-related differentially expressed genes (DEGs) in R. chinensis were identified and analyzed after SM1 infection. The results increased our understanding of immune responses in pests. This study was helpful for the development of immune suppressive agents in R. chinensis management. Abstract Reticulitermes chinensis Snyder is an important pest species in China. Serratia marcescens Bizio (SM1) is a potent biological bacterium. In our lab, we found that SM1 can kill R. chinensis. To date, the interaction between R. chinensis and SM1 has not been studied. Here, we explored immune responses of R. chinensis against SM1 using transcriptome sequencing. To elucidate immune-related genes, we identified 126,153 unigenes from R. chinensis. In total, 178 immune-related differentially expressed genes (DEGs) were identified. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that many cellular responses were enriched in the top 20 terms. Then, we systematically analyzed several cellular immune pathways involved in the response of R. chinensis to SM1, including phagocytosis, autophagy, and endocytosis pathways. Furthermore, the expression profiles of the cellular immune-related genes were assessed using quantitative reverse-transcription PCR, and the expression levels of the selected genes were upregulated. Further results revealed SM1-mediated activation of humoral immune responses genes, including Toll, IMD, and melanization pathways, which suggested the involvement of humoral immune responses in the defense against SM1. This research elucidated the mechanisms underlying the immune defense of R. chinensis against SM1, providing a solid theoretical basis for exploiting new immune suppressive agents to control R. chinensis. Moreover, this study will facilitate the better control of R. chinensis using SM1.

Keywords: chinensis sm1; defense; immune; reticulitermes chinensis; chinensis

Journal Title: Insects
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.