LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Monarda didyma Hydrolate Affects the Survival and the Behaviour of Drosophila suzukii

Photo by create4eyes from unsplash

Simple Summary During the steam distillation of aromatic plants, two main fractions are usually obtained: the hydrophobic essential oils and the hydrophilic fraction commonly known as hydrolate (HY). The essential… Click to show full abstract

Simple Summary During the steam distillation of aromatic plants, two main fractions are usually obtained: the hydrophobic essential oils and the hydrophilic fraction commonly known as hydrolate (HY). The essential oils are largely used in several industry fields, including the agricultural industry as biopesticides. Residual HYs, instead, are often discarded as by-products of little or no value. Our research pointed out that also HYs have biological activity, suggesting their potential use in plant-based strategy for the pest control. In more detail, we investigated the insecticidal properties of the hydrolate from Monarda didyma, scarlet beebalm, towards Drosophila suzukii. Using specific molecular and behavioural assays, we showed that M. didyma hydrolate affected the fitness and behaviour of D. suzukii, providing new insights in the D. suzukii control strategies through M. didyma hydrolate. Abstract Drosophila suzukii (Matsumara) is an herbivorous pest whose control in the field with conventional chemical is particularly difficult and has important drawbacks. Here, we investigated the insecticidal properties of hydrolate from Monarda didyma, scarlet beebalm, an aromatic herb in the Lamiaceae family. The identification of volatile organic compounds (VOCs) by CG–MS systems revealed that thymol (38%) and carvacrol (59%) were the most abundant VOCs in the hydrolate. M. didyma hydrolate did not show fumigant toxicity. Conversely, in contact assays, M. didyma hydrolate showed a LC50 of 5.03 µL mL−1, 48 h after the application on D. suzukii adults. Expression of detoxification genes increased in flies that survived the LC50 application. Furthermore, toxicity persisted for 7 days after the treatment in the survival evaluation. Artificial diet assays with 100 and 1000 µL mL−1 of M. didyma hydrolate resulted in a significant decrease in total food intake in both male and female D. suzukii adults. In addition, electropenetrography (EPG) showed that the D. suzukii females’ feeding behaviour was altered in hydrolate-treated diets. The hydrolate also caused a significant reduction in the number of eggs laid in two different oviposition assays. Overall, our findings provide a new perspective for the improvement of D. suzukii control strategies through M. didyma hydrolate.

Keywords: hydrolate; didyma hydrolate; drosophila suzukii; control; monarda didyma

Journal Title: Insects
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.