LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Characterization of Cold and Heat Tolerance of Bactrocera tau (Walker)

Photo by pueblovista from unsplash

Simple Summary Insects are often stressed by adverse factors in their natural environment. Temperature is a crucial driver of insect activity, adaptability, and distribution, and therefore, it greatly impacts the… Click to show full abstract

Simple Summary Insects are often stressed by adverse factors in their natural environment. Temperature is a crucial driver of insect activity, adaptability, and distribution, and therefore, it greatly impacts the invasive success of alien pests. Bactrocera tau (Walker) is an invasive polyphagous herbivore of vegetables and fruits, now a pest of global importance. This study provides useful information about B. tau’s cold- and heat tolerance to extremely low and high temperatures. Its different life stages (i.e., egg, larvae, pupae, and adult) had high survival rates under adverse temperatures spanning −5 to 0 °C and 39 to 42 °C. These findings suggest that B. tau possesses a wide temperature threshold range for survival, which likely contributes to its better establishment and expansion in new regions. Meanwhile, fitted curves were used to quantify B. tau’s tolerance potential as a function of both stress intensity (heat or cold) and exposure duration. The information generated in this study will contribute to our understanding of thermal tolerance in B. tau and could also provide insights for devising phytosanitary control approaches. Abstract Bactrocera tau (Walker) (Diptera: Tephritidae) is a serious, economically important invasive pest that has spread and been established in many regions worldwide. Temperature is a crucial abiotic factor governing insect activity, fitness, and geographical distribution. Yet, surprisingly, the tolerance of B. tau to extreme cold and heat stress remains unclear. Here, we measured the supercooling point (SCP) of different life stages of B. tau. Further, several life stages of B. tau (egg, 1st, 2nd, and 3rd instar larvae, 1-day-old pupae, and 3-day-old adult) were subjected to six low temperatures (−9, −7, −5, −3, −1, and 0 °C) and six high temperatures (39, 40, 41, 42, 43, and 44 °C) for various durations (0.5, 1.0, 2.0, and 4.0 h), and three-way survival–time–temperature relationships were investigated. We found that the SCPs differed significantly among different life stages of B. tau, being the lowest for SCP of eggs, at −25.82 ± 0.51 °C. There was no significant effect of sex on the mean SCPs of B. tau adults, except for 45- to 50-day-old flies. In addition, an interaction effect was uncovered between tested temperatures and exposure duration upon B. tau mortality at different life stages. Eggs exhibited the strongest cold tolerance, yet the weakest heat tolerance. The 3rd instar larvae were the most heat- and cold tolerant among larval stages, followed by the 2nd and 1st instar larvae. The upper limit of the chill injury zone (ULCIZ) for 3-day-old adult and 1-day-old pupae was −2.51 °C and −2.50 °C, respectively, while their corresponding lower limit of thermal injury zone (LLTIZ) was 39.39 °C and 38.29 °C. This paper presents valuable data to provide an integrated knowledge for understanding the cold and heat tolerance potential of B. tau and ensure the proper implementation of post-harvest phytosanitary protocols for this pest’s disinfestation.

Keywords: heat tolerance; tau; cold heat; bactrocera tau; tolerance

Journal Title: Insects
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.