Simple Summary Many insects host a diverse gut microbial community, ranging from pathogenic to obligate mutualistic organisms. Little is known about the bacteria associated with katydids. Gampsocleis gratiosa (Orthoptera, Tettigoniidae)… Click to show full abstract
Simple Summary Many insects host a diverse gut microbial community, ranging from pathogenic to obligate mutualistic organisms. Little is known about the bacteria associated with katydids. Gampsocleis gratiosa (Orthoptera, Tettigoniidae) is an economically important singing pet in China. In the present study, the bacterial communities of the laboratory-reared G. gratiosa feces were characterized using Illumina sequencing of the 16S rDNA V3-V4 region. Abstract We used Illumina sequencing of the 16S rDNA V3-V4 region to identify the bacterial community in laboratory-reared G. gratiosa feces across different developmental stages (1st–7th instar nymph day 0, and 0-, 7-, 14-, and 21-day adult) and sexes. In total, 14,480,559 high-quality reads were clustered into 2982 species-level operational taxonomic units (OTUs), with an average of 481.197 (±137.366) OTUs per sample. These OTUs were assigned into 25 phyla, 42 classes, 60 orders, 116 families, 241 genera, and some unclassified groups. Only 21 core OTUs were shared by all samples. The most representative phylum was Proteobacteria, followed by Firmicutes, Bacteroidetes, and Acidobacteria. At the genus level, Kluyvera (387 OTUs), Obesumbacterium (339 OTUs), Buttiauxella (296 OTUs), Lactobacillus (286 OTUs), and Hafnia (152 OTUs) were dominant bacteria. The early-instar nymphs harbored a similar bacterial community with other developmental stages, which contain higher species diversity. Both principal coordinate analysis (PCoA) and non-metric multidimensional scaling analysis (NMDS) failed to provide a clear clustering based on the developmental stages and sexes. Overall, we assume that G. gratiosa transmits bacteria vertically by eating contaminated eggshells, and both developmental stages and sexes had no significant effect on the fecal bacterial community.
               
Click one of the above tabs to view related content.