LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Geometric Morphometric Wing Analysis of Avian Malaria Vector, Culiseta longiareolata, from Two Locations in Algeria

Photo by mcgilllibrary from unsplash

Simple Summary Culiseta longiareolata (Macquart 1838) is a cosmopolitan mosquito species and is considered to be an important vector in the transmission of avian malaria, tularemia, and arboviruses. The present… Click to show full abstract

Simple Summary Culiseta longiareolata (Macquart 1838) is a cosmopolitan mosquito species and is considered to be an important vector in the transmission of avian malaria, tularemia, and arboviruses. The present study investigates the population structure of Cs. longiareolata from different bioclimatic and larval habitat types using a wing geometric morphometric approach. The main findings of our study showed that these environmental factors shape the population structure of Cs. longiareolata, most especially in male mosquitoes. This further deepens our understanding of how vector mosquitoes such as Cs. longiareolata adapt and thrive in different environmental conditions. Abstract The application of geometric morphometry on mosquito wings (Culicidae) is considered a powerful tool for evaluating correlations between the phenotype (e.g., shape) and environmental or genetic variables. However, this has not been used to study the wings of the avian malaria vector, Culiseta longiareolata. Therefore, the goal of this study is to investigate the intra-specific wing variations between male and female Cs. longiareolata populations in different types of larval habitats and climatic conditions in Algeria. A total of 256 Cs. longiareolata mosquito samples were collected from January 2020 to July 2021 in three cities (Annaba, El-Tarf, and Guelma) of northeastern Algeria that have two distinct climatic condition levels (sub-humid and sub-arid) and different types of larval habitats (artificial and natural). Nineteen (19) wing landmarks (LMs) were digitized and analyzed based on geometric morphometry. Our results revealed differences in the wing shape of female and male mosquito populations, indicating sexual dimorphism. Moreover, canonical variance analysis (CVA) showed that factors, such as climatic conditions and type of larval habitats, also affect the wing shape of female and male Cs. longiareolata mosquito populations. Furthermore, the wing shape of male populations was more distinct compared with female populations.

Keywords: avian malaria; vector; mosquito; geometric morphometric; culiseta longiareolata

Journal Title: Insects
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.