Simple Summary Global warming could affect Collembola and related decomposition processes within soil ecosystems in permafrost wetlands. Open top chambers (OTCs) were used to simulate climate warming in a cold… Click to show full abstract
Simple Summary Global warming could affect Collembola and related decomposition processes within soil ecosystems in permafrost wetlands. Open top chambers (OTCs) were used to simulate climate warming in a cold temperate monsoon climate zone in the Great Hing’an Mountains of Northeast China. Collembola were captured using an aspirator after five years of simulated warming. We found that warming treatment increased the species richness and abundance of Collembola in most of the different seasons, except in May. Species composition differed significantly in the control and warming treatment in May and September. The Collembola species composition in permafrost wetlands was mainly determined by air humidity, indicating different responses of Collembola species to the indirect effect of warming on water availability. It is indicated that warming was the primary factor positively affecting the abundance of Collembola. An increase of Collembola abundance and community alteration to warming could have profound cascading effects on the microbes and plants they feed on in permafrost wetlands. Abstract The consideration of environmental factors has long been crucial to developing theories about the spatial variability of species diversity. However, the effects of global warming on Collembola, in permafrost wetlands, are largely unknown. Understanding how Collembola are affected by climate warming is important as they directly affect the community assembly and decomposition processes of plant litter within soil ecosystems. A peatland area in a cold temperate monsoon climate zone in the Great Hing’an Mountains of Northeast China was selected as the study area. Collembola were captured using an aspirator after five years of simulated warming using open top chambers (OTCs). Sampling in different growth seasons showed different characteristics in the control (CK) and warming (OTCs) treatment. Further, the results showed that (1) warming treatment increased the species richness and abundance of Collembola in the different seasons, except in May, (2) warming increased Collembola abundance in permafrost wetlands, and the warming effect was more significant during the cold season (about eight times in April), (3) species composition differed significantly in the control and warming treatment in May and September, and (4) the Collembola species composition in permafrost wetlands was mainly determined by air humidity, indicating different responses of Collembola species to the indirect effect of warming on water availability. We found that warming was the primary factor positively affecting the abundance of Collembola. An increase of Collembola abundance and community alteration to warming could have profound cascading effects on the microbes and plants they feed on in permafrost wetlands.
               
Click one of the above tabs to view related content.