LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Novel Design Flow for a Security-Driven Synthesis of Side-Channel Hardened Cryptographic Modules

Photo by scottwebb from unsplash

Over the last few decades, computer-aided engineering (CAE) tools have been developed and improved in order to ensure a short time-to-market in the chip design business. Up to now, these… Click to show full abstract

Over the last few decades, computer-aided engineering (CAE) tools have been developed and improved in order to ensure a short time-to-market in the chip design business. Up to now, these design tools do not yet support an integrated design strategy for the development of side-channel-resistant hardware implementations. In order to close this gap, a novel framework named AMASIVE (Adaptable Modular Autonomous SIde-Channel Vulnerability Evaluator) was developed. It supports the designer in implementing devices hardened against power attacks by exploiting novel security-driven synthesis methods. The article at hand can be seen as the second of the two contributions that address the AMASIVE framework. While the first one describes how the framework automatically detects vulnerabilities against power attacks, the second one explains how a design can be hardened in an automatic way by means of appropriate countermeasures, which are tailored to the identified weaknesses. In addition to the theoretical introduction of the fundamental concepts, we demonstrate an application to the hardening of a complete hardware implementation of the block cipher PRESENT.

Keywords: security driven; side channel; driven synthesis; design

Journal Title: Journal of Low Power Electronics and Applications
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.