LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effects of Water Velocity on Growth, Physiology and Intestinal Structure of Coral Trout (Plectropomus leopardus)

Photo by ldxcreative from unsplash

This study aimed to investigate the effects of different water velocities on the growth performance, blood physiology, and digestive capacity of coral trout (Plectropomus leopardus) in a Recirculating aquaculture system… Click to show full abstract

This study aimed to investigate the effects of different water velocities on the growth performance, blood physiology, and digestive capacity of coral trout (Plectropomus leopardus) in a Recirculating aquaculture system (RAS). One hundred and twenty healthy, uniformly sized coral trout (body mass (92.01 ± 8.04) g; body length (15.40 ± 0.65) cm) were randomly assigned to three flow velocity groups (1 bl/s, 2 bl/s, and 2.5 bl/s) and one control group (0 bl/s). The results show that the weight gain rate (WGR) and specific growth rate (SGR) of coral trout in the 2.5 bl/s water flow velocity group were significantly lower than those in the control group and 1 bl/s water flow velocity group (p < 0.05), while their feed coefficient (FC) values were significantly higher than those of the control group and 1 bl/s water flow velocity group (p < 0.05). The blood glucose (GLU) concentration of coral trout in the 2 bl/s water flow velocity group and the 2.5 bl/s water flow velocity group significantly decreased compared to those in the control group (p < 0.05), while the lactic acid (LD) concentration increased. As the cortisol (COR) concentration and lipase (LPS) enzyme activity of coral trout did not significantly change (p > 0.05), the α- AMS enzyme activity significantly decreased (p < 0.05). Under 2.5 bl/s water flow velocity, the intestinal structure of coral trout changed, and the number of goblet cells decreased. High-water flow velocities affect the physiological homeostasis and intestinal digestion of coral trout, resulting in a decrease in their growth performance, indicating that coral trout is more sensitive to high-water flow velocities. In actual RAS aquaculture, the flow rate should be controlled within 1 bl/s.

Keywords: coral trout; water; velocity; flow; group; physiology

Journal Title: Journal of Marine Science and Engineering
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.