LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Multiphysics Co-Simulation and Experimental Study of Deep-Sea Hydrothermal Energy Generation System

Photo by alvarordesign from unsplash

With the continuous deepening of research on seafloor hydrothermal observations, the demand for a sustainable power supply of observation equipment is increasingly urgent. A kind of device that utilizes the… Click to show full abstract

With the continuous deepening of research on seafloor hydrothermal observations, the demand for a sustainable power supply of observation equipment is increasingly urgent. A kind of device that utilizes the temperature difference near hydrothermal vents to provide power is studied. However, the frequent experiments required for in-depth research on this device contradict the rare opportunities for hydrothermal field experiments and the difficulty in laboratory replication. In response to the above difficulties, a multiphysics co-simulation of the deep-sea hydrothermal energy generation system is studied in this paper. Firstly, the output performance analysis and modeling of the TEG installed in the device under pressure are carried out. An enhanced heat transfer model of the system is proposed for the hydrothermal fluids in the flow channel of the device. Then, the thermoelectric model of TEG and the heat transfer model of the device are jointly simulated by using Fluent and Simulink software. Eventually, the simulation data are compared with the data obtained through experiments. The average absolute of the relative error of the open-circuit voltage is 5.07%, and the maximum one is 6.28%. The corresponding values of the maximum output power are 5.16% and 6.79%, respectively. Therefore, the performance of the hydrothermal thermoelectric power generation system and the correctness of the proposed overall co-simulation model are verified.

Keywords: system; generation system; simulation; multiphysics simulation; device

Journal Title: Journal of Marine Science and Engineering
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.