LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Temporal Model for Ship Twin-Propeller Jet Induced Sandbed Scour

Photo from wikipedia

This research paper proposes the use of empirical equations to estimate the temporal maximum scour that is induced by twin-propeller ( ε t w i n = Ω t [… Click to show full abstract

This research paper proposes the use of empirical equations to estimate the temporal maximum scour that is induced by twin-propeller ( ε t w i n = Ω t [ l n ( t ) ] Γ t ) when acting over non-cohesive bed materials. A purpose built experimental apparatus is used to obtain the measurement data required for the calculation of the empirical constants. The output from rigorous experimental investigations demonstrates that the maximum scour depth produced from the operation of twin-propeller ( ε t w i n ), within the confines of a harbour basin, varies as a logarithmic function of time. A dimensional analysis of the standard single propeller configuration is used as the foundation upon which the scour equation is postulated. This is extended to include the influence of the operating distance between the twin-propeller configurations for the first time. The division of scours by twin-propeller and single-propeller ( ε twin / ε m ) enables the establishment of mathematical relation to calculate C1, C2, A, and B. The constants are C 1 = 366.11, C 2 = 0.3376, A = 0.859, and B = 0.1571. The proposed scour equation is more reliable within the time zone up to two hours based on the experimental data.

Keywords: model ship; ship twin; twin propeller; propeller jet; propeller; temporal model

Journal Title: Journal of Marine Science and Engineering
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.