LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effect of Maneuvering on Ice-Induced Loading on Ship Hull: Dedicated Full-Scale Tests in the Baltic Sea

Photo from wikipedia

Maneuvers in level ice are common operations for icebreakers and polar supply vessels. Maneuvering exposes the midship and stern area to ice interaction, influencing the magnitude and frequency of ice-induced… Click to show full abstract

Maneuvers in level ice are common operations for icebreakers and polar supply vessels. Maneuvering exposes the midship and stern area to ice interaction, influencing the magnitude and frequency of ice-induced loading in these areas. However, full-scale measurements do not typically cover the midship and stern areas, as measurements have commonly focused on the bow area. Controlled maneuvering tests were conducted during the ice trials of S.A. Agulhas II in the Baltic Sea. During these tests, ice-induced loading at different hull areas was measured simultaneously with ship control, navigation, and ice condition data. This work studied the effect of maneuvers on the characteristics and statistics of ice-induced loading at different hull areas and compared the impact to ahead operations. The study showed that the maneuvers had minor impact to the magnitude, frequency, and duration of loading at the bow and bow shoulder. On the other hand, maneuvers had a clear effect on the load magnitude and frequency at the stern shoulder. Additionally, a statistical analysis showed that the load magnitude increased as a function of load duration in all hull areas. Furthermore, the analyzed measurement data are presented and made available with the paper.

Keywords: full scale; hull; ice induced; effect; ice; induced loading

Journal Title: Journal of Marine Science and Engineering
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.