LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Acoustic Characteristics of Small Research Vessels

Photo by thisisengineering from unsplash

Vessel noise is an acute and chronic stressor of a wide variety of marine fauna. Understanding, modelling and mitigating the impacts of this pollutant requires quantification of acoustic signatures for… Click to show full abstract

Vessel noise is an acute and chronic stressor of a wide variety of marine fauna. Understanding, modelling and mitigating the impacts of this pollutant requires quantification of acoustic signatures for various vessel classes for input into propagation models and at present there is a paucity of such data for small vessels (<25 m). Our study provides this information for three small vessels (<6 m length and 30, 90 and 180 hp engines). The closest point of approach was recorded at various ranges across a flat, ≈10 m deep sandy lagoon, for multiple passes at multiple speeds (≈5, 10, 20, 30 km h−1) by each vessel at Lizard Island, Great Barrier Reef, Australia. Radiated noise levels (RNLs) and environment-affected source levels (ASLs) determined by linear regression were estimated for each vessel and speed. From the slowest to fastest speeds, median RNLs ranged between 153.4 and 166.1 dB re 1 µPa m, whereas ASLs ranged from 146.7 to 160.0 dB re 1 µPa m. One-third octave band-level RNLs are provided for each vessel–speed scenario, together with their interpolated received levels with range. Our study provides data on source spectra of small vessels to assist in understanding and modelling of acoustic exposure experienced by marine fauna.

Keywords: small vessels; research vessels; small research; acoustic characteristics; characteristics small

Journal Title: Journal of Marine Science and Engineering
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.