LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

MAPK CcSakA of the HOG Pathway Is Involved in Stipe Elongation during Fruiting Body Development in Coprinopsis cinerea

Photo by tcwillmott from unsplash

Mitogen-activated protein kinase (MAPK) pathways, such as the high-osmolarity glycerol mitogen-activated protein kinase (HOG) pathway, are evolutionarily conserved signaling modules responsible for transmitting environmental stress signals in eukaryotic organisms. Here,… Click to show full abstract

Mitogen-activated protein kinase (MAPK) pathways, such as the high-osmolarity glycerol mitogen-activated protein kinase (HOG) pathway, are evolutionarily conserved signaling modules responsible for transmitting environmental stress signals in eukaryotic organisms. Here, we identified the MAPK homologue in the HOG pathway of Coprinopsis cinerea, which was named CcSakA. Furthermore, during the development of the fruiting body, CcSakA was phosphorylated in the fast elongating apical part of the stipe, which meant that CcSakA was activated in the apical elongating stipe region of the fruiting body. The knockdown of CcSakA resulted in a shorter stipe of the fruiting body compared to the control strain, and the expression of phosphomimicking mutant CcSakA led to a longer stipe of the fruiting body compared to the control strain. The chitinase CcChiE1, which plays a key role during stipe elongation, was downregulated in the CcSakA knockdown strains and upregulated in the CcSakA phosphomimicking mutant strains. The results indicated that CcSakA participated in the elongation of stipes in the fruiting body development of C. cinerea by regulating the expression of CcChiE1. Analysis of the H2O2 concentration in different parts of the stipe showed that the oxidative stress in the elongating part of the stipe was higher than those in the non-elongating part. The results indicated that CcSakA of the HOG pathway may be activated by oxidative stress. Our results demonstrated that the HOG pathway transmits stress signals and regulates the expression of CcChiE1 during fruiting body development in C. cinerea.

Keywords: development; ccsaka; hog pathway; fruiting body; body

Journal Title: Journal of Fungi
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.