LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Kinase Hog1 and Adr1 Opposingly Regulate Haploid Cell Morphology by Controlling Vacuole Size in Sporisorium scitamineum

Morphogenesis is a strictly regulated efficient system in eukaryotes for adapting to environmental changes. However, the morphogenesis regulatory mechanism in smut fungi is not clear. This study reports a relationship… Click to show full abstract

Morphogenesis is a strictly regulated efficient system in eukaryotes for adapting to environmental changes. However, the morphogenesis regulatory mechanism in smut fungi is not clear. This study reports a relationship between MAP kinase Hog1 and cAMP-dependent protein kinase A catalytic subunit (Adr1) for the morphological regulation in the sugarcane pathogen Sporisorium scitamineum. The results demonstrated that MAP kinase Hog1 and cAMP/PKA signaling pathways are essential for the morphological development of S. scitamineum. Interestingly, MAP kinase Hog1 and cAMP/PKA signaling pathways’ defective mutants exhibit an opposite morphological phenotype. The morphology of cAMP/PKA defective mutants is recovered by deleting the SsHOG1 gene. However, MAP kinase Hog1 and cAMP-dependent protein kinase catalytic subunit Adr1 do not interfere with each other. Further investigations showed that kinase Hog1 and Adr1 antagonistically regulates the vacuolar size, which contributes to the cell size and determines the cellular elongation rates. Kinase Hog1 and Adr1 also antagonistically balanced the cell wall integrity and permeability. Taken together, kinase Hog1- and Adr1-based opposing morphogenesis regulation of S. scitamineum by controlling the vacuolar size and cell wall permeability is established during the study.

Keywords: scitamineum; hog1 adr1; kinase hog1; hog1

Journal Title: Journal of Fungi
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.