The exploration of alternatives to the use of chemical preservatives in food is a topic that has attracted great attention. The implementation of regulations associated with the reduction of these… Click to show full abstract
The exploration of alternatives to the use of chemical preservatives in food is a topic that has attracted great attention. The implementation of regulations associated with the reduction of these elements directly affects the production of cured meat products, with the premise of looking for more “natural” alternatives. From a previously identified collection of 24 strains of Debaryomyces hansenii, isolated from dry meat products of the “Valle de los Pedroches” (Córdoba), a screening was carried out to determine which strains had inhibitory potential against a battery of fungi belonging to the genera Aspergillus, Penicillium, and Candida. After a series of general trials, four strains showing the greatest potential were selected by a streak inhibition assay performed at several concentrations of NaCl. The inhibitory activity of the selected D. hansenii strains was later evaluated by measuring their fungal antagonistic diffusible and volatile compound production following radial inhibition and mouth-to-mouth approaches, respectively. Growth aspects, sporulation, and morphology changes were also considered during these assays. The results support ideas already raised in previous studies, such as the presence of D. hanseniii could imply a reduction of pathogenic fungi in food. Autochthonous yeast strains inhibited not only the mycelial growth, but also sporulation, which strengthens the biocontrol activity of this yeast. Our results show that, under certain conditions, all tested D. hansenii strains were able to alter the growth/development of fungi, being especially evident in the cases of Penicillium expansum and Aspergillus niger. Finally, our research can facilitate the future comparison of results in this area, since we contributed to standardize the methodology described to date, we quantified the number of yeast cells and spores used during the experiments, we homogenized growth conditions for both, yeasts, and molds, and applied an image analyzer software to quantify the growth of the studied microorganisms in solid media.
               
Click one of the above tabs to view related content.