LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Transcriptome Analysis of the Influence of High-Pressure Carbon Dioxide on Saccharomyces cerevisiae under Sub-Lethal Condition

Photo from wikipedia

High-pressure carbon dioxide (HPCD), a novel non-thermal pasteurization technology, has attracted the attention of scientists due to its high pasteurization efficiency at a lower temperature and pressure. However, the inactivation… Click to show full abstract

High-pressure carbon dioxide (HPCD), a novel non-thermal pasteurization technology, has attracted the attention of scientists due to its high pasteurization efficiency at a lower temperature and pressure. However, the inactivation mechanism has not been well researched, and this has hindered its commercial application. In this work, we used a sub-lethal HPCD condition (4.0 MPa, 30 °C) and a recovery condition (30 °C) to repair the damaged cells. Transcriptome analysis was performed by using RNA sequencing and gene ontology analysis to investigate the detailed lethal mechanism caused by HPCD treatment. RT-qPCR analysis was conducted for certain upregulated genes, and the influence of HPCD on protoplasts and single-gene deletion strains was investigated. Six major categories of upregulated genes were identified, including genes associated with the pentose phosphate pathway (oxidative phase), cell wall organization or biogenesis, glutathione metabolism, protein refolding, phosphatidylcholine biosynthesis, and AdoMet synthesis, which are all considered to be associated with cell death induced by HPCD. The inactivation or structure alteration of YNL194Cp in the organelle membrane is considered the critical reason for cell death. We believe this work contributes to elucidating the cell-death mechanism and providing a direction for further research on non-thermal HPCD sterilization technology.

Keywords: condition; carbon dioxide; pressure carbon; pressure; analysis; high pressure

Journal Title: Journal of Fungi
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.