LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

In Vitro Antifungal Activity of LL-37 Analogue Peptides against Candida spp.

Photo from wikipedia

Fungal infections have increased in recent decades with considerable morbidity and mortality, mainly in immunosuppressed or admitted-to-the-ICU patients. The fungal resistance to conventional antifungal treatments has become a public health… Click to show full abstract

Fungal infections have increased in recent decades with considerable morbidity and mortality, mainly in immunosuppressed or admitted-to-the-ICU patients. The fungal resistance to conventional antifungal treatments has become a public health problem, especially with Candida that presents resistance to several antifungals. Therefore, generating new alternatives of antifungal therapy is fundamental. One of these possibilities is the use of antimicrobial peptides, such as LL-37, which acts on the disruption of the microorganism membrane and promotes immunomodulatory effects in the host. In this study, we evaluated the in vitro antifungal activity of the LL-37 analogue peptides (AC-1, LL37-1, AC-2, and D) against different Candida spp. and clinical isolates obtained from patients with vulvovaginal candidiasis. Our results suggest that the peptides with the best ranges of MICs were LL37-1 and AC-2 (0.07 µM) against the strains studied. This inhibitory effect was confirmed by analyzing the yeast growth curves that evidenced a significant decrease in the fungal growth after exposure to LL-37 peptides. By the XTT technique we observed a significant reduction in the biofilm formation process when compared to yeasts untreated with the analogue peptides. In conclusion, we suggest that LL-37 analogue peptides may play an important antimicrobial role against Candida spp.

Keywords: antifungal activity; candida spp; activity analogue; vitro antifungal; analogue peptides

Journal Title: Journal of Fungi
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.