LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Genetic Engineering of Talaromyces marneffei to Enhance Siderophore Production and Preliminary Testing for Medical Application Potential

Photo by drew_hays from unsplash

Siderophores are compounds with low molecular weight with a high affinity and specificity for ferric iron, which is produced by bacteria and fungi. Fungal siderophores have been characterized and their… Click to show full abstract

Siderophores are compounds with low molecular weight with a high affinity and specificity for ferric iron, which is produced by bacteria and fungi. Fungal siderophores have been characterized and their feasibility for clinical applications has been investigated. Fungi may be limited in slow growth and low siderophore production; however, they have advantages of high diversity and affinity. Hence, the purpose of this study was to generate a genetically modified strain in Talaromyces marneffei that enhanced siderophore production and to identify the characteristics of siderophore to guide its medical application. SreA is a transcription factor that negatively controls iron acquisition mechanisms. Therefore, we deleted the sreA gene to enhance the siderophore production and found that the null mutant of sreA (ΔsreA) produced a high amount of extracellular siderophores. The produced siderophore was characterized using HPLC-MS, HPLC-DAD, FTIR, and 1H- and 13C-NMR techniques and identified as a coprogen B. The compound showed a powerful iron-binding activity and could reduce labile iron pool levels in iron-loaded hepatocellular carcinoma (Huh7) cells. In addition, the coprogen B showed no toxicity to the Huh7 cells, demonstrating its potential to serve as an ideal iron chelator. Moreover, it inhibits the growth of Candida albicans and Escherichia coli in a dose-dependent manner. Thus, we have generated the siderophore-enhancing strain of T. marneffei, and the coprogen B isolated from this strain could be useful in the development of a new iron-chelating agent or other medical applications.

Keywords: iron; talaromyces marneffei; medical application; siderophore production

Journal Title: Journal of Fungi
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.