Sorghum bicolor is cultivated worldwide. Leaf spots on sorghum, which lead to leaf lesions and impaired growth, are prevalent and severe in Guizhou Province, Southwest China. In August 2021, new… Click to show full abstract
Sorghum bicolor is cultivated worldwide. Leaf spots on sorghum, which lead to leaf lesions and impaired growth, are prevalent and severe in Guizhou Province, Southwest China. In August 2021, new leaf spot symptoms were observed on sorghum plants growing in agricultural fields. We used conventional tissue isolation methods and pathogenicity determination tests. Inoculations of sorghum with isolate 022ZW resulted in brown lesions similar to those observed under field conditions. The original inoculated isolates were reisolated and fulfilled Koch’s postulates. Based on the morphological character and phylogenetic analyses of the combined sequences of the internal transcribed spacer (ITS) region and the β-tubulin (TUB2) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) genes, we identified the isolated fungus as C. fructicola. This paper is the first to report this fungus-causing disease in sorghum leaves. We studied the sensitivity of the pathogen to various phytochemicals. The sensitivity of C. fructicola to seven phytochemicals was measured using the mycelial growth rate method. Honokiol, magnolol, thymol, and carvacrol displayed good antifungal effects, with EC50 (concentration for 50% of the maximal effect) values of 21.70 ± 0.81, 24.19 ± 0.49, 31.97 ± 0.51, and 31.04 ± 0.891 µg/mL, respectively. We tested the control effect of the seven phytochemicals on the anthracnose caused by C. fructicola: honokiol and magnolol displayed good field efficacy. In this study, we expand the host range of C. fructicola, providing a basis for controlling sorghum leaf diseases caused by C. fructicola.
               
Click one of the above tabs to view related content.