LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Facile Synthesis and Characterization of Cupric Oxide Loaded 2D Structure Graphitic Carbon Nitride (g-C3N4) Nanocomposite: In Vitro Anti-Bacterial and Fungal Interaction Studies

Photo from wikipedia

The active and inexpensive catalyst cupric oxide (CuO) loaded foliar fertilizer of graphitic carbon nitride (g-C3N4) is investigated for biological applications due to its low cost and easy synthesis. The… Click to show full abstract

The active and inexpensive catalyst cupric oxide (CuO) loaded foliar fertilizer of graphitic carbon nitride (g-C3N4) is investigated for biological applications due to its low cost and easy synthesis. The synthesized CuO NPs, bulk g-C3N4, exfoliated g-C3N4, and different weight percentages of 30 wt%, 40 wt%, 50 wt%, 60 wt%, and 70 wt% CuO-loaded g-C3N4 are characterized using different analytical techniques, including powder X-ray diffraction, scanning electron microscopy, energy dispersive X-ray analysis, and ultraviolet-visible spectroscopy. The nanocomposite of CuO NPs loaded g-C3N4 exhibits antibacterial activity against Gram-positive bacteria (Staphylococcus aureus and Streptococcus pyogenes) and Gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa). The 20 μg/mL of 70 wt% CuO/g-C3N4 nanocomposite showed an efficiency of 98% for Gram-positive bacteria, 80% for E. Coli, and 85% for P. aeruginosa. In the same way, since the 70 wt% CuO/g-C3N4 nanocomposite showed the best results for antibacterial activity, the same compound was evaluated for anti-fungal activity. For this purpose, the fungi Fusarium oxysporum and Trichoderma viride were used. The anti-fungal activity experiments were not conducted in the presence of sunlight, and no appreciable fungal inhibition was observed. As per the literature, the presence of the catalyst g-C3N4, without an external light source, reduces the fungal inhibition performance. Hence, in the future, some modifications in the experimental conditions should be considered to improve the anti-fungal activity.

Keywords: graphitic carbon; c3n4; c3n4 nanocomposite; activity; carbon nitride; cupric oxide

Journal Title: Journal of Fungi
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.