LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

An Unsupervised Approach to Structuring and Analyzing Repetitive Semantic Structures in Free Text of Electronic Medical Records

Photo by maxchen2k from unsplash

Electronic medical records (EMRs) include many valuable data about patients, which is, however, unstructured. Therefore, there is a lack of both labeled medical text data in Russian and tools for… Click to show full abstract

Electronic medical records (EMRs) include many valuable data about patients, which is, however, unstructured. Therefore, there is a lack of both labeled medical text data in Russian and tools for automatic annotation. As a result, today, it is hardly feasible for researchers to utilize text data of EMRs in training machine learning models in the biomedical domain. We present an unsupervised approach to medical data annotation. Syntactic trees are produced from initial sentences using morphological and syntactical analyses. In retrieved trees, similar subtrees are grouped using Node2Vec and Word2Vec and labeled using domain vocabularies and Wikidata categories. The usage of Wikidata categories increased the fraction of labeled sentences 5.5 times compared to labeling with domain vocabularies only. We show on a validation dataset that the proposed labeling method generates meaningful labels correctly for 92.7% of groups. Annotation with domain vocabularies and Wikidata categories covered more than 82% of sentences of the corpus, extended with timestamp and event labels 97% of sentences got covered. The obtained method can be used to label EMRs in Russian automatically. Additionally, the proposed methodology can be applied to other languages, which lack resources for automatic labeling and domain vocabulary.

Keywords: text; unsupervised approach; domain; electronic medical; medical records

Journal Title: Journal of Personalized Medicine
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.