LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

SAXS Reveals the Stabilization Effects of Modified Sugars on Model Proteins

Photo from wikipedia

Many proteins are usually not stable under different stresses, such as temperature and pH variations, mechanical stresses, high concentrations, and high saline contents, and their transport is always difficult, because… Click to show full abstract

Many proteins are usually not stable under different stresses, such as temperature and pH variations, mechanical stresses, high concentrations, and high saline contents, and their transport is always difficult, because they need to be maintained in a cold regime, which is costly and very challenging to achieve in remote areas of the world. For this reason, it is extremely important to find stabilizing agents that are able to preserve and protect proteins against denaturation. In the present work, we investigate, by extensively using synchrotron small-angle X-ray scattering experiments, the stabilization effect of five different sugar-derived compounds developed at ExtremoChem on two model proteins: myoglobin and insulin. The data analysis, based on a novel method that combines structural and thermodynamic features, has provided details about the physical-chemical processes that regulate the stability of these proteins in the presence of stabilizing compounds. The results clearly show that some modified sugars exert a greater stabilizing effect than others, being able to maintain the active forms of proteins at temperatures higher than those in which proteins, in the absence of stabilizers, reach denatured states.

Keywords: reveals stabilization; stabilization effects; model proteins; modified sugars; saxs reveals

Journal Title: Life
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.