LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Microvascular and Morphologic Changes of the Macula over Lifetime

Photo from wikipedia

In ocular, neurologic, and cardiovascular diseases, macular segmentation data from spectral-domain optical coherence tomography (SD-OCT) provide morphologic, and OCT-angiography (OCTA) results give microvascular information about the macula. Age was shown… Click to show full abstract

In ocular, neurologic, and cardiovascular diseases, macular segmentation data from spectral-domain optical coherence tomography (SD-OCT) provide morphologic, and OCT-angiography (OCTA) results give microvascular information about the macula. Age was shown to influence both methods’ measurements. To further characterize this association, macular SD-OCT and OCTA changes were investigated in a population of juvenile, adult, and older individuals. Macular segment thickness and superficial (SCP) and deep plexus (DCP) vascular density (VD) of 157 healthy individuals aged 10–79 years were analyzed retrospectively. One-way analysis of variance (ANOVA) was used to compare age groups. The association between macular segmentation and OCTA parameters and between these and age was evaluated using linear regression. ANOVA and linear regression analysis showed a thickness decrease in the whole macular and in the ganglion cell and inner plexiform layers with age. While the foveal avascular zone area remained constant between age groups, VD of the SCP and DCP also decreased with age. In multiple linear regression, SCP and DCP VD were associated with inner macular segment thickness in an age-independent way. To conclude, the age-related microvascular and morphological changes in the macula described in this study can contribute to improving the understanding of macular aging processes and better interpreting OCT(A) results in healthy individuals and patients suffering from various retinal diseases.

Keywords: linear regression; age; microvascular morphologic; macula lifetime; morphologic changes; changes macula

Journal Title: Life
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.