LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Isolated Mitochondria State after Myocardial Ischemia-Reperfusion Injury and Cardioprotection: Analysis by Flow Cytometry

Photo by kellysikkema from unsplash

Rationale: Mitochondria are key organelles involved in cell survival and death during the acute phenomena of myocardial ischemia-reperfusion (i.e., myocardial infarction). To investigate the functions of isolated mitochondria such as… Click to show full abstract

Rationale: Mitochondria are key organelles involved in cell survival and death during the acute phenomena of myocardial ischemia-reperfusion (i.e., myocardial infarction). To investigate the functions of isolated mitochondria such as calcium retention capacity, oxidative phosphorylation, and reactive oxygen species (ROS) production, already established methods are based on extramitochondrial measurements of the whole mitochondria population. Objective: The aim of this study was to develop a reliable and well-characterized method for multiparametric analysis of isolated single mitochondrion by flow cytometry (FC) in the context of myocardial infarction. The advantage of FC is the possibility to give a simultaneous analysis of morphological parameters (side and forward scatters: SSC and FSC) for each mitochondrion, combined with intramitochondrial measurements of several biological markers, such as ROS production or membrane potential (Δφm), using specific fluorescent probes. Methods and Results: For this study, a rat model of ischemia-reperfusion and a protective approach of post-conditioning using low reperfusion pressure was used. Thanks to the use of specific probes (NAO, MTR, TMRM, DilC1, and DHR123) combined with flow cytometry, we propose a method: (i) to identify mitochondrial populations of interest based on quality criteria (NAO/TMRM double staining); (ii) to monitor their morphological criteria, especially during swelling due to calcium overload; and (iii) to compare mitochondrial functions (membrane potential and ROS production) in different experimental groups. Applied to mitochondria from ischemic hearts, these measurements revealed that individual mitochondria are altered and that cardioprotection by low-pressure reperfusion reduces damage, as expected. Conclusions: Our results highlight FC as a reliable and sensitive method to investigate changes in mitochondrial functions and morphology in pathological conditions that disrupts their activity such as the case in ischemia-reperfusion. This methodological approach can be extended to other pathologies involving mitochondrial dysfunctions. Moreover, FC offers the possibility to work with very small amounts of isolated mitochondria, a factor that may limit the use of classical methods.

Keywords: flow cytometry; isolated mitochondria; reperfusion; analysis; ischemia reperfusion

Journal Title: Life
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.