LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

In-Situ Epoxidation of Waste Cooking Oil and Its Methyl Esters for Lubricant Applications: Characterization and Rheology

Photo from wikipedia

In the present investigation, in-situ epoxidation of waste cooking oil and its methyl esters was prepared, and the rheological behavior was analyzed for biolubricant applications. Rheological properties of the prepared… Click to show full abstract

In the present investigation, in-situ epoxidation of waste cooking oil and its methyl esters was prepared, and the rheological behavior was analyzed for biolubricant applications. Rheological properties of the prepared epoxides were measured at a temperature of 25–100 °C, at a shear rate ranging from 5 to 300 s−1. As viscosity is one of the critical parameters for potential biolubricant applications, in the present study, the power-law model was used to investigate the flow behavior of the epoxides. The viscosity of epoxidized waste cooking oil and its methyl ester epoxides showed Newtonian flow behavior in the studied temperature range. Different shear rates (5–100, 5–300, 100–300 s−1) were studied to determine the shear rate dependency of the epoxidized waste cooking oil and its methyl ester epoxides at different temperatures. From the average viscosity values, it was shown that the epoxides show identical results at all shear rates. The dynamic viscosities of the epoxidized waste cooking oil and its methyl ester epoxides were found to be dependent on fatty acid chain length, unsaturation, and temperature. Detailed physicochemical characterization for epoxide waste cooking oil (EWCO) and epoxide waste cooking oil methyl esters (EWCOME) were carried out to evaluate the properties for suitable biolubricant applications using standard American Society for Testing and Materials (ASTM) and American Oil Chemists’ Society (AOCS) methods. Based on the viscosity for EWCO (278.9 mm2/s) and EWCOME (12.15 mm2/s) and viscosity index for EWCO (164.94) and EWCOME (151.97) of the prepared epoxides, they could complement the standard ISO vegetable grade (VG) lubricants in the market.

Keywords: oil methyl; oil; cooking oil; rheology; waste cooking

Journal Title: Lubricants
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.