Carbonate apatite (CO3Ap) block, which is a bone replacement used to repair defects, was fabricated through a dissolution–precipitation reaction using a calcium hydrogen phosphate dihydrate (DCPD) block as a precursor.… Click to show full abstract
Carbonate apatite (CO3Ap) block, which is a bone replacement used to repair defects, was fabricated through a dissolution–precipitation reaction using a calcium hydrogen phosphate dihydrate (DCPD) block as a precursor. When the DCPD block was immersed in NaHCO3 or Na2CO3 solution at 80 °C, DCPD converted to CO3Ap within 3 days. β-Tricalcium phosphate was formed as an intermediate phase, and it was completely converted to CO3Ap within 2 weeks when the DCPD block was immersed in Na2CO3 solution. Although the crystal structures of the DCPD and CO3Ap blocks were different, the macroscopic structure was maintained during the compositional transformation through the dissolution–precipitation reaction. CO3Ap block fabricated in NaHCO3 or Na2CO3 solution contained 12.9 and 15.8 wt % carbonate, respectively. The diametral tensile strength of the CO3Ap block was 2 MPa, and the porosity was approximately 57% regardless of the carbonate solution. DCPD is a useful precursor for the fabrication of CO3Ap block.
               
Click one of the above tabs to view related content.