LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Comparison of Microscale Techniques for Determining Fracture Toughness of LiMn2O4 Particles

Photo by shubhesh from unsplash

Accurate estimation of fracture behavior of commercial LiMn2O4 particles is of great importance to predict the performance and lifetime of a battery. The present study compares two different microscale techniques… Click to show full abstract

Accurate estimation of fracture behavior of commercial LiMn2O4 particles is of great importance to predict the performance and lifetime of a battery. The present study compares two different microscale techniques to quantify the fracture toughness of LiMn2O4 particles embedded in an epoxy matrix. The first technique uses focused ion beam (FIB) milled micro pillars that are subsequently tested using the nanoindentation technique. The pillar geometry, critical load at pillar failure, and cohesive FEM simulations are then used to compute the fracture toughness. The second technique relies on the use of atomic force microscopy (AFM) to measure the crack opening displacement (COD) and subsequent application of Irwin’s near field theory to measure the mode-I crack tip toughness of the material. Results show pillar splitting method provides a fracture toughness value of ~0.24 MPa.m1/2, while COD measurements give a crack tip toughness of ~0.81 MPa.m1/2. The comparison of fracture toughness values with the estimated value on the reference LiMn2O4 wafer reveals that micro pillar technique provides measurements that are more reliable than the COD method. The difference is associated with ease of experimental setup, calculation simplicity, and little or no influence of external factors as associated with the COD measurements.

Keywords: microscale techniques; fracture toughness; limn2o4 particles; fracture

Journal Title: Materials
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.