LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Structure-Controllable Synthesis of Multiferroic YFeO3 Nanopowders and Their Optical and Magnetic Properties

Photo from academic.microsoft.com

Phase-pure hexagonal and orthorhombic YFeO3 nanopowders are synthesized by low-temperature solid-state reaction along with Zr doping. The obtained powders are characterized by X-ray diffraction, field emission scanning electron microscopy, and… Click to show full abstract

Phase-pure hexagonal and orthorhombic YFeO3 nanopowders are synthesized by low-temperature solid-state reaction along with Zr doping. The obtained powders are characterized by X-ray diffraction, field emission scanning electron microscopy, and physical property measurements. The hexagonal YFeO3 exhibits a narrower optical band gap in comparison to the orthorhombic one, while the orthorhombic YFeO3 presents better magnetic properties. The formation of hexagonal or orthorhombic phase can be effectively controlled by Zr doping. The temperature range of synthesizing the hexagonal YFeO3 nanopowders is increased by ~200 °C due to Zr doping so that they can be easily synthesized, which possesses a finer particle size and a smaller optical band gap, making it favorable for optical applications.

Keywords: structure controllable; magnetic properties; controllable synthesis; synthesis multiferroic; yfeo3; yfeo3 nanopowders

Journal Title: Materials
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.