BiVO4/Mn1−xZnxFe2O4 was prepared by the impregnation roasting method. XRD (X-ray Diffractometer) tests showed that the prepared BiVO4 is monoclinic crystal, and the introduction of Mn1−xZnxFe2O4 does not change the crystal… Click to show full abstract
BiVO4/Mn1−xZnxFe2O4 was prepared by the impregnation roasting method. XRD (X-ray Diffractometer) tests showed that the prepared BiVO4 is monoclinic crystal, and the introduction of Mn1−xZnxFe2O4 does not change the crystal structure of BiVO4. The introduction of a soft-magnetic material, Mn1−xZnxFe2O4, was beneficial to the composite photocatalyst’s separation from the liquid solution using an extra magnet after use. UV-vis spectra analysis indicated that Mn1−xZnxFe2O4 enhanced the absorption intensity of visible light for BiVO4. EIS (electrochemical impedance spectroscopy) investigation revealed that the introduction of Mn1−xZnxFe2O4 enhanced the conductivity of BiVO4, further decreasing its electron transfer impedance. The photocatalytic efficiency of BiVO4/Mn1−xZnxFe2O4 was higher than that of pure BiVO4. In other words, Mn1−xZnxFe2O4 could enhance the photocatalytic reaction rate.
               
Click one of the above tabs to view related content.