LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Plasmonic Au Array SERS Substrate with Optimized Thin Film Oxide Substrate Layer

Photo from wikipedia

This work studies the effect of a plasmonic array structure coupled with thin film oxide substrate layers on optical surface enhancement using a finite element method. Previous results have shown… Click to show full abstract

This work studies the effect of a plasmonic array structure coupled with thin film oxide substrate layers on optical surface enhancement using a finite element method. Previous results have shown that as the nanowire spacing increases in the sub-100 nm range, enhancement decreases; however, this work improves upon previous results by extending the range above 100 nm. It also averages optical enhancement across the entire device surface rather than localized regions, which gives a more practical estimate of the sensor response. A significant finding is that in higher ranges, optical enhancement does not always decrease but instead has additional plasmonic modes at greater nanowire and spacing dimensions resonant with the period of the structure and the incident light wavelength, making it possible to optimize enhancement in more accessibly fabricated nanowire array structures. This work also studies surface enhancement to optimize the geometries of plasmonic wires and oxide substrate thickness. Periodic oscillations of surface enhancement are observed at specific oxide thicknesses. These results will help improve future research by providing optimized geometries for SERS molecular sensors.

Keywords: oxide substrate; thin film; plasmonic array; film oxide; enhancement

Journal Title: Materials
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.