LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Compact Storage of Radioactive Cesium in Compressed Pellets of Zeolite Polymer Composite Fibers

Photo from wikipedia

To facilitate the safe storage of radioactive Cs, a zeolite–poly(ethersulfone) composite fiber was fabricated to be a compact storage form of radioactive Cs, and an immobilization was investigated with respect… Click to show full abstract

To facilitate the safe storage of radioactive Cs, a zeolite–poly(ethersulfone) composite fiber was fabricated to be a compact storage form of radioactive Cs, and an immobilization was investigated with respect to the effects of volume reduction and stability of the fiber’s adsorbent matrix. Using compressed heat treatment at 100–800 °C for a zeolite polymer composite fiber (ZPCF) containing Cs, the fabrication changed its form from a fiber into a pellet, which decreased the matrix volume to be about one-sixth of its original volume. The Cs leakage behavior of the ZPCF matrix was examined in its compact pellet form for non-radioactive Cs and radioactive Cs when different fabrication conditions were carried out in the immobilization. The elution ratio of non-radioactive Cs from the matrix was minimal, at 0.05%, when the ZPCF was compressed with heat treatment at 300 °C. When using radioactive Cs for the compression at below 300 °C, the pellet form also had no elution of the pollutants from the matrix. When the compressed treatment was at 500 °C, the matrix exhibited elution of radioactive Cs to the outside, meaning that the plastic component was burning and decomposed in the pellet. A comparison of ZPCF and natural zeolite indicated that the compressed heating process for ZPCF was useful in a less-volume-immobilized form of the compact adsorbent for radioactive Cs storage.

Keywords: compact storage; storage; zeolite polymer; zpcf; polymer composite; storage radioactive

Journal Title: Materials
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.