LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Fabrication of Cu Based Metallic Binder for Diamond Tools by Microwave Pressureless Sintering

Photo by clarke_designs_photography from unsplash

Microwave pressureless sintering (MPS) method is successfully applied in the fabrication of Cu based metallic matrix for diamond tools. The main purpose of this work is to obtain better mechanical… Click to show full abstract

Microwave pressureless sintering (MPS) method is successfully applied in the fabrication of Cu based metallic matrix for diamond tools. The main purpose of this work is to obtain better mechanical properties when the metal binder of the diamond tools was prepared by the MPS method. The orthogonal experimental method is adopted to design the sintering process parameters. The optimized experimental conditions are suggested as 880 °C of sintering temperature, 375 MPa of cold pressure, and 35 min of withholding time. The contrastive investigation of the MPS and conventional pressureless sintering (CPS) are performed under optimized conditions. The microstructures information are obtained by scanning electron microscopy (SEM), X-ray diffraction (XRD), electron probe microanalysis (EPMA), and the necessary mechanical properties, such as relative density, hardness, and flexural strength are tested. Experimental results show that the MPS method, compared with CPS, can significantly improve the mechanical properties of the metallic matrix. The factors of relative density, hardness, and flexural strength increase 1.25%, 3.86%, and 6.28%, respectively. The possible sintering mechanism of the MPS method is also discussed. This work may provide a reference for the fabrication of metal-based diamond tools by microwave heating method.

Keywords: diamond tools; mps method; pressureless sintering; microwave pressureless; diamond; fabrication based

Journal Title: Materials
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.