LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Photovoltage Reversal in Organic Optoelectronic Devices with Insulator-Semiconductor Interfaces

Photo by laurenmancke from unsplash

Photoinduced space-charges in organic optoelectronic devices, which are usually caused by poor mobility and charge injection imbalance, always limit the device performance. Here we demonstrate that photoinduced space-charge layers, accumulated… Click to show full abstract

Photoinduced space-charges in organic optoelectronic devices, which are usually caused by poor mobility and charge injection imbalance, always limit the device performance. Here we demonstrate that photoinduced space-charge layers, accumulated at organic semiconductor-insulator interfaces, can also play a role for photocurrent generation. Photocurrent transients from organic devices, with insulator-semiconductor interfaces, were systematically studied by using the double-layer model with an equivalent circuit. Results indicated that the electric fields in photoinduced space-charge layers can be utilized for charge generation and can even induce a photovoltage reversal. Such an operational process of light harvesting would be promising for photoelectric conversion in organic devices.

Keywords: optoelectronic devices; semiconductor; insulator semiconductor; insulator; devices insulator; organic optoelectronic

Journal Title: Materials
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.