Al-PTFE (aluminum-polytetrafluoroethene) is regarded as one of the most promising reactive materials (RMs). In this work, Ni (Nickel) was added to Al-PTFE composites for the purpose of improving the energy… Click to show full abstract
Al-PTFE (aluminum-polytetrafluoroethene) is regarded as one of the most promising reactive materials (RMs). In this work, Ni (Nickel) was added to Al-PTFE composites for the purpose of improving the energy density and damage effect. To investigate the thermal behavior, mechanical properties and reaction characteristics of the Al-Ni-PTFE composites, an Al-PTFE mixture and an Al-Ni mixture were prepared by ultrasonic mixing. Six types of Al-Ni-PTFE specimens with different component mass ratios were prepared by molding sintering. Simultaneous thermal analysis experiments were carried out to characterize the thermal behavior of the Al-PTFE mixture and the Al-Ni mixture. Quasi-static compression tests were performed to analyze the mechanical properties and reaction characteristics of the Al-Ni-PTFE specimens. The results indicate that the reaction onset temperature of Al-Ni (582.7 °C) was similar to that of Al-PTFE (587.6 °C) and that the reaction heat of Al-Ni (991.9 J/g) was 12.5 times higher than that of Al-PTFE (79.6 J/g). With the increase of Ni content, the material changed from ductile to brittle and the strain hardening modulus and compressive strength rose first and then subsequently decreased, reaching a maximum of 51.35 MPa and 111.41 MPa respectively when the volume fraction of Ni was 10%. An exothermic reaction occurred for the specimens with a Ni volume fraction no more than 10% under quasi-static compression, accompanied by the formation of Ni-Al intermetallic compounds. In the Al-Ni-PTFE system, the reaction between Al and PTFE preceded the reaction between Al and Ni and the feasibility of increasing the energy density and damage effect of the Al-Ni-PTFE reactive material by means of Ni-Al reaction was proved.
               
Click one of the above tabs to view related content.