In this study, we report on a low-temperature sintered enamel coating with a high-strength bonding and wear-resistance that protected a grey cast iron substrate. The SiO2–Al2O3–B2O3 composited prescription for the… Click to show full abstract
In this study, we report on a low-temperature sintered enamel coating with a high-strength bonding and wear-resistance that protected a grey cast iron substrate. The SiO2–Al2O3–B2O3 composited prescription for the enamel coating was modified by the partial substitutions of SiO2 for B2O3 and alkali metals for Li2O. The optimized enamel coating was prepared by sintering at a relatively low temperature (730 °C) for seven minutes. Due to the composition of both the amorphous and crystalline phases, the enamel coating presented sufficient hardness and excellent wear resistance. The wear volume loss and the specific wear rate of the enamel coating were obviously lower than that of the metal substrate. The enamel coating can effectively improve the service life of the grey cast iron substrate in a complex frictional environment.
               
Click one of the above tabs to view related content.