A series of different contents of glycidyl methacrylate (GMA)-grafted natural rubber (GNR) copolymers were fabricated via green bulk melt-grafting reactions, and super-tough bio-based poly (lactic acid) (PLA)/GNR thermoplastic vulcanizates (TPVs)… Click to show full abstract
A series of different contents of glycidyl methacrylate (GMA)-grafted natural rubber (GNR) copolymers were fabricated via green bulk melt-grafting reactions, and super-tough bio-based poly (lactic acid) (PLA)/GNR thermoplastic vulcanizates (TPVs) were achieved by in-situ dynamic vulcanization. Increasing the graft yield, gel fraction, and crosslinking density of GNR vulcanizates effectively improved the ductility of the PLA/GNR TPVs, while prolonging the dynamic vulcanization time and increasing the GMA graft yield led to a notable enhancement in the impact toughness of the PLA/GNR TPVs. PLA/30 wt % GNR TPVs exhibited a significantly increased elongation (410%) and notched impact strength (73.2 kJ/m2), which were 40 and 15 times higher than those of the PLA/30 wt % NR TPVs, respectively. The new bio-based PLA/GNR TPVs offer promise as replacements for petroleum-based polymers in the automotive, 3D printing, and packaging fields.
               
Click one of the above tabs to view related content.