LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The Influence of Heat and Mechanical Treatment of Concrete Rubble on the Properties of Recycled Aggregate Concrete

Photo from wikipedia

Concrete is a building material commonly used for ages. Therefore, in the result of repairs or demolition of building structures, large amounts of concrete rubble are created, which requires appropriate… Click to show full abstract

Concrete is a building material commonly used for ages. Therefore, in the result of repairs or demolition of building structures, large amounts of concrete rubble are created, which requires appropriate management. The aim of the realized research was to determine the influence of heat and mechanical treatment of concrete rubble on the properties of recycled aggregate concrete. The research experiment included 12 series, with three variables: X1—roasting temperature (300, 600, 900 °C), X2—time of mechanical treatment (5, 10, 15 min), X3—content of coarse recycled aggregates (20, 40, 60% by volume). Two additional series containing recycled aggregate without treatment and natural aggregate were also prepared. Established properties of individual aggregates have confirmed a positive effect of thermo-mechanical treatment. Then, based on the results of compressive strength, flexural strength, Young’s modulus, volumetric density, water absorption, water permeability and capillarity, the most favourable parameters of heat and mechanical treatment of concrete were determined. The test results showed that appropriate treatment of concrete rubble allows to obtain high-quality coarse aggregate and valuable fine fraction. This was also confirmed by the macro- and microscopic observations of the aggregate and separated cement paste. Works realized on the concrete recycling method resulted in obtaining a patent PAT.229887.

Keywords: mechanical treatment; concrete rubble; treatment; treatment concrete; heat mechanical

Journal Title: Materials
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.