LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Rapid Immobilization of Simulated Radioactive Soil Waste Using Self-Propagating Synthesized Gd2Ti2O7 Pyrochlore Matrix

Photo by gabrielj_photography from unsplash

A rapid and effective method is necessary in the disposal of severely radioactive contaminated soil waste. Simulated Ce-bearing radioactive soil waste was immobilized by self-propagating high-temperature synthesis (SHS) within 5… Click to show full abstract

A rapid and effective method is necessary in the disposal of severely radioactive contaminated soil waste. Simulated Ce-bearing radioactive soil waste was immobilized by self-propagating high-temperature synthesis (SHS) within 5 min in this study. The main work includes the rapid synthesis of soil waste forms, the analysis of phase composition, microstructure and chemical durability. These results show that the simulated nuclide Ce was successfully immobilized into the pyrochlore-rich waste matrice, whose main phases are SiO2, pyrochlore (Gd2Ti2O7) and Cu. The normalized leaching rates of Si and Na on the 42nd day are 1.86 × 10−3 and 1.63 × 10−2 g·m−2·d−1, respectively. And the normalized leaching rate of Ce also remains at low level (10−5–10−6 g·m−2·d−1) within 42 days.

Keywords: waste; self propagating; soil waste; radioactive soil; pyrochlore

Journal Title: Materials
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.