LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Performance Evaluation of Asphalt Rubber Mixture with Additives

Photo by jordanmcdonald from unsplash

Crumb rubber, as a recycled material used in asphalt mixture, has gained more attention in recent years due to environmental benefits and the advantages of its pavement, such as excellent… Click to show full abstract

Crumb rubber, as a recycled material used in asphalt mixture, has gained more attention in recent years due to environmental benefits and the advantages of its pavement, such as excellent resistance to cracking, improved durability, less road maintenance, lower road noise, etc. However, the high-temperature performance of mixture with crumb rubber does not perform well. In order to improve the performance, this paper examined the effect of additives on the laboratory performance of asphalt rubber Stone Matrix Asphalt (AR-SMA) with additives. Three groups of AR-SMA: no additives, Styrene–Butadiene–Styrene (SBS) and Granular Polymer Durable additive (GPDa) were included, with no additives as a control group. Each group was investigated at three asphalt rubber content (ARC): 6.4%, 6.9%, 7.4% with regard to high-temperature and fatigue properties. The results show that with increasing ARC, the high-temperature performance of mixture without additive decreases, and the high-temperature performance increases first and then decreases for SBS and GPDa. Moreover, the rutting resistance of AR-SMA with GPDa at 6.9% ARC performs best. Under the condition of mixtures with appropriate ARC, AR-SMA with GPDa has higher fatigue life and sensitivity to fatigue cracking than the control group. Simultaneously, the fatigue performance of AR-SMA with GPDa is not as significant as that without additive with increasing ARC. In a word, GPDa is a good choice to improve the performance of AR-SMA. However, it should be noted that optimal asphalt content of AR-SMA mixtures with GPDa is higher than that of traditional mixtures.

Keywords: gpda; sma; performance; mixture; asphalt rubber; rubber

Journal Title: Materials
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.