LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Microstructural Evolution and Mechanical Properties of an Advanced γ-TiAl Based Alloy Processed by Spark Plasma Sintering

Photo by m2creates from unsplash

Intermetallic γ-TiAl based alloys are innovative lightweight structural high-temperature materials used in aerospace and automotive applications due to already established industrial-scale processing routes, like casting and hot-working, i.e., forging. A… Click to show full abstract

Intermetallic γ-TiAl based alloys are innovative lightweight structural high-temperature materials used in aerospace and automotive applications due to already established industrial-scale processing routes, like casting and hot-working, i.e., forging. A promising alternative method of production, regarding manufacturing of near net-shape components, goes over the powder metallurgy route, more precisely by densification of TiAl powder via spark plasma sintering. In this study, gas atomized powder from the 4th generation TNM alloy, Ti-43.5Al-4Nb-1Mo-0.1B (in at.%), was densified and the microstructure was investigated by means of electron microscopy and X-ray diffraction. The sintered microstructure exhibits lamellar α2-Ti3Al /γ-TiAl colonies surrounded by globular γ- and ordered βo-TiAl phase. The coarse lamellar spacing stems from the low cooling rate after densification at sintering temperature. Against this background, subsequent heat treatments were designed to decrease the lamellar widths by a factor of ten. Accompanying, tensile tests and creep experiments at different temperatures revealed that the modified almost fully lamellar microstructure is enhanced in strength and creep resistance, where a small volume fraction of globular γ-phase provides ductility at ambient temperatures.

Keywords: plasma sintering; microstructural evolution; tial based; spark plasma

Journal Title: Materials
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.