LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Microstructure and Morphology Control of Potassium Magnesium Titanates and Sodium Iron Titanates by Molten Salt Synthesis

Photo from wikipedia

Titanates materials have attracted considerable interest due to their unusual functional and structural properties for many applications such as high-performance composites, devices, etc. Thus, the development of a large-scale synthesis… Click to show full abstract

Titanates materials have attracted considerable interest due to their unusual functional and structural properties for many applications such as high-performance composites, devices, etc. Thus, the development of a large-scale synthesis method for preparing high-quality titanates at a low cost is desired. In this study, a series of quaternary titanates including K0.8Mg0.4Ti1.6O4, Na0.9Mg0.45Ti1.55O4, Na0.75Fe0.75Ti0.25O2, NaFeTiO4, and K2.3Fe2.3Ti5.7O16 are synthesized by a simple molten salt method using inexpensive salts of KCl and NaCl. The starting materials, intermediate products, final products, and their transformations were studied by using TG-DSC, XRD, SEM, and EDS. The results show that the grain size, morphology, and chemical composition of the synthesized quaternary titanates can be controlled simply by varying the experimental conditions. The molar ratio of mixed molten salts is critical to the morphology of products. When KCl:NaCl = 3:1, the morphology of K0.8Mg0.4Ti1.6O4 changes from platelet to board and then bar-like by increasing the molar ratio of molten salt (KCl–NaCl) to raw materials from 0.7 to 2.5. NaFeTiO4 needles and Na0.75Fe0.75Ti0.25O2 platelets are obtained when the molar ratio of molten salt (NaCl) to raw materials is 4. Pure phase of Na0.9Mg0.45Ti1.55O4 and K2.3Fe2.3Ti5.7O16 are also observed. The formation and growth mechanisms of both potassium magnesium titanates and sodium iron titanates are discussed based on the characterization results.

Keywords: potassium magnesium; sodium iron; magnesium titanates; titanates sodium; molten salt; morphology

Journal Title: Materials
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.