LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Experimental Verification and Comparative Analysis of Equivalent Methods on Metal’s Fixed Joint Interface

Photo from wikipedia

In order to effectively improve the dynamic characteristics of the fixed metal joint interface, it is important to establish a correct equivalent model of the metal joint interface. In this… Click to show full abstract

In order to effectively improve the dynamic characteristics of the fixed metal joint interface, it is important to establish a correct equivalent model of the metal joint interface. In this paper, three equivalent methods for simulating the metal joint interface are analyzed, including the virtual material method, spring damping method, finite element method, and verification by modal experiment. First, according to the contact mechanics model of the constructed metal joint interface, the physical properties of the three-dimensional models of the fixed joint interface are assigned in the ANSYS software. Then, three methods are used for the modal analysis and compared with a modal experiment. The results show that the modal shapes of the three theoretical methods are consistent with those of the experimental modes. The first five natural frequencies obtained by the virtual material method are closest to the experimental natural frequencies, and the errors are within 10%. The errors of the other two methods are between 9% and 39%. Therefore, the virtual material method is a better equivalent method of the metal joint interface.

Keywords: method; joint interface; equivalent methods; interface; metal joint

Journal Title: Materials
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.