LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Microstructure and Texture Evolution of Mg–Gd–Y–Zn–Zr Alloy by Compression–Torsion Deformation

Photo by woods from unsplash

Mg–13Gd–4Y–2Zn–0.5Zr alloy was subjected to compression–torsion deformation at 450 °C with a strain rate of 0.001–0.5 s−1 using a Gleeble 3500 torsion unit. The effects of compression–torsion deformation on the… Click to show full abstract

Mg–13Gd–4Y–2Zn–0.5Zr alloy was subjected to compression–torsion deformation at 450 °C with a strain rate of 0.001–0.5 s−1 using a Gleeble 3500 torsion unit. The effects of compression–torsion deformation on the microstructure and texture were studied, and the results showed that with the decrease of strain rate, the texture strength decreased, the number of dynamic precipitated particles increased, the degree of recrystallization increased, and the dynamic recrystallization mechanism changed from a continuous dynamic recrystallization mechanism to a continuous and discontinuous dynamic recrystallization mechanism. Along the direction of increasing radius, the degree of dynamic recrystallized grain (DRX) increased, the number of dynamic precipitated particles increased, and the texture strength slightly increased.

Keywords: torsion deformation; texture; compression torsion; torsion

Journal Title: Materials
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.