LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Improved DC Dielectric Performance of Photon-Initiated Crosslinking Polyethylene with TMPTMA Auxiliary Agent

Photo from wikipedia

To achieve high direct current (DC) dielectric performance of crosslinked polyethylene (XLPE) applied for insulated cable, the auxiliary crosslinking agent of trimethylolpropane trimethacrylate (TMPTMA) is employed in photon-initiated crosslinking process… Click to show full abstract

To achieve high direct current (DC) dielectric performance of crosslinked polyethylene (XLPE) applied for insulated cable, the auxiliary crosslinking agent of trimethylolpropane trimethacrylate (TMPTMA) is employed in photon-initiated crosslinking process to the present polar-molecular group which will introduce deep traps for charge carriers. The space-charge accumulation and electrical conductance of XLPE are observably suppressed due to the deep traps deriving from the TMPTMA crosslinkers that are chemically connecting (grafted onto) polyethylene molecules. Thermally stimulated depolarization current tests and first-principles calculations consistently demonstrate a trapping mechanism of impeding charge injection and carrier transport in XLPE with TMPTMA crosslinkers. The characteristic cyclic anhydrides with coupled carbonyl groups are used as auxiliary crosslinkers to promote crosslinking efficiency and provide polar groups to polyethylene molecules which can be effectively fulfilled in industrial cable production. The results of infrared spectroscopy show that the auxiliary crosslinkers have been successfully grated to polyethylene molecules through the UV-initiation process. The space-charge characteristics achieve a significant improvement consistent with the theoretical estimation that deeper electronic traps can be introduced by auxiliary crosslinker and will consequently suppress space-charge accumulation through a trapping mechanism. Meanwhile, the conductivity of XLPE observably increases after using TMPTMA auxiliary crosslinkers at various temperatures of cable operation. The first-principles calculations also demonstrate that substantial electronic bound states have been introduced at the band edge of polyethylene molecules crosslinked by TMPTMA, leading to reduction in electrical conductivity. On the advantage of ameliorating DC dielectric performance by way of UV-initiated crosslinking process, the present research suggests a substantial strategy in XLPE cable industrial productions.

Keywords: dielectric performance; initiated crosslinking; polyethylene; tmptma; xlpe

Journal Title: Materials
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.