LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

In Situ Formation of Ti47Cu38Zr7.5Fe2.5Sn2Si1Nb2 Amorphous Coating by Laser Surface Remelting

Photo by shapelined from unsplash

In previous studies, Ti-based bulk metallic glasses (BMGs) free from Ni and Be were developed as promising biomaterials. Corresponding amorphous coatings might have low elastic modulus, remarkable wear resistance, good… Click to show full abstract

In previous studies, Ti-based bulk metallic glasses (BMGs) free from Ni and Be were developed as promising biomaterials. Corresponding amorphous coatings might have low elastic modulus, remarkable wear resistance, good corrosion resistance, and biocompatibility. However, the amorphous coatings obtained by the common methods (high velocity oxygen fuel, laser cladding, etc.) have cracks, micro-pores, and unfused particles. In this work, a Ti-based Ti47Cu38Zr7.5Fe2.5Sn2Si1Nb2 amorphous coating with a maximum thickness of about 100 μm was obtained by laser surface remelting (LSR). The in-situ formation makes the coating dense and strongly bonded. It exhibited better corrosion resistance than the matrix and its corrosion mechanism was discussed. The effects of LSR on the microstructural evolution of Ti-based prefabricated alloy sheets were investigated. The nano-hardness in the heat affected zone (HAZ) was markedly increased by 51%, meanwhile the elastic modulus of the amorphous coating was decreased by 18%. This demonstrated that LSR could be an effective method to manufacture the high-quality amorphous coating. The in-situ amorphous coating free from Ni and Be had a low modulus, which might be a potential corrosion-resistant biomaterial.

Keywords: laser surface; laser; 5fe2 5sn2si1nb2; amorphous coating; 5sn2si1nb2 amorphous; ti47cu38zr7 5fe2

Journal Title: Materials
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.