LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

In Situ Synchrotron Diffraction Analysis of Zn Additions on the Compression Properties of NK30

Photo from wikipedia

In situ synchrotron radiation diffraction was performed during the compression of as-cast Mg–3Nd–Zn alloys with different amounts (0, 0.5, 1, and 2 wt %) of Zn addition at room temperature.… Click to show full abstract

In situ synchrotron radiation diffraction was performed during the compression of as-cast Mg–3Nd–Zn alloys with different amounts (0, 0.5, 1, and 2 wt %) of Zn addition at room temperature. During the tests, the acoustic emission signals of the samples were recorded. The results show that the addition of Zn decreased the strength of the alloys but, at the same time, increased their ductility. In the earlier stages of deformation, twin formation and basal slip were the dominant deformation mechanisms. The twins tended to grow during the entire compression stage; however, the formation of new twins dominated only at the beginning of the plastic deformation. In order to accommodate the strain levels, the alloys containing Zn underwent nonbasal slip in the later stages of deformation. This can be attributed to the presence of precipitates containing Zn in the microstructure, inhibiting twin growth.

Keywords: compression; analysis additions; diffraction analysis; synchrotron diffraction; situ synchrotron

Journal Title: Materials
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.