LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effects of Si/C Ratio on the Phase Composition of Si-C-N Powders Synthesized by Carbonitriding

Photo from wikipedia

Si-C-N based materials possess interesting properties such as high hardness and oxidation resistance. The compacts of silicon and cornstarch with different Si/C ratios were subjected to carbonitriding at 1350–1550 °C.… Click to show full abstract

Si-C-N based materials possess interesting properties such as high hardness and oxidation resistance. The compacts of silicon and cornstarch with different Si/C ratios were subjected to carbonitriding at 1350–1550 °C. Reaction products were characterized by X-ray powder diffractometer (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and transmission electron microscope (TEM). The effects of Si/C ratio on the phase composition of Si-C-N powders were investigated. The results revealed that the Si/C ratio played a crucial role on the formation of crystalline silicon carbonitride (SiCN) and the phase composition of Si-C-N powders. It was demonstrated that liquid silicon is an important medium and reaction site for the introduction of nitrogen, so the Si content in reactants has affected the N content in the product. On the other hand, carbon participates in the carbonization of Si3N4 and the formation of SiC. The contents of C-N bond and SiCN in the products are carbon content-dependent. Combining the above two aspects, the maximum yield of SiCN can be achieved with the Si/C ratio of 1:1 to 1:1.5.

Keywords: phase composition; composition powders; powders synthesized; effects ratio; ratio phase

Journal Title: Materials
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.