Magnesium alloys attract attention as degradable implant materials due to their adjustable corrosion properties and biocompatibility. In the last few decades, especially wrought magnesium alloys with enhanced mechanical properties have… Click to show full abstract
Magnesium alloys attract attention as degradable implant materials due to their adjustable corrosion properties and biocompatibility. In the last few decades, especially wrought magnesium alloys with enhanced mechanical properties have been developed, with the main aim of increasing ductility and formability. Alloying and processing studies allowed demonstrating the relationship between the processing and the microstructure development for many new magnesium alloys. Based on this experience, magnesium alloy compositions need adjustment to elements improving mechanical properties while being suitable for biomaterial applications. In this work, magnesium alloys from two Mg-Zn series with Ce (ZE) or Ca (ZX) as additional elements and a series of alloys with Ag and Ca (QX) as alloying elements are suggested. The microstructure development was studied after the extrusion of round bars with varied processing parameters and was related to the mechanical properties and the degradation behavior of the alloys. Grain refinement and texture weakening mechanisms could be improved based on the alloy composition for enhancing the mechanical properties. Degradation rates largely depended on the nature of second phase particles rather than on the grain size, but remained suitable for biological applications. Furthermore, all alloy compositions exhibited promising cytocompatibility.
               
Click one of the above tabs to view related content.