The effects of Co for Fe substitution on magnetic properties, thermal stability and crystal structure of Fe85.45−xCoxCu0.55B14 (x = 0, 2.5, 5, 7.5, 10) melt spun amorphous alloys were investigated.… Click to show full abstract
The effects of Co for Fe substitution on magnetic properties, thermal stability and crystal structure of Fe85.45−xCoxCu0.55B14 (x = 0, 2.5, 5, 7.5, 10) melt spun amorphous alloys were investigated. The Cu content was firstly optimized to minimize the energy of amorphous phase formation by the use of a thermodynamic approach. The formation of crystalline α-Fe type phase has been described using differential scanning calorimetry, X-ray diffractometry and transmission electron microscopy. The classical heat treatment process (with heating rate 10 °C/min) in vacuum for wound toroidal cores was optimized in the temperature range from 280 to 430 °C in order to obtain the best magnetic properties (magnetic saturation Bs and coercivity Hc obtained from the B(H) dependencies) at 50 Hz frequency. For optimal heat-treated samples, the complex magnetic permeability in the frequencies 104–108 Hz at room temperature was measured. Finally, magnetic core losses were obtained for 1 T/50 Hz and 1.5 T/50 Hz values for samples annealed at T = 310 °C. An analysis of transmission electron microscope images and electron diffraction patterns confirmed that high magnetic parameters are related to the coexistence of the amorphous and nanocrystalline phases.
               
Click one of the above tabs to view related content.