LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effect of Carbonaceous Components on Tribological Properties of Copper-Free NAO Friction Material

Photo from wikipedia

Copper helps to accelerate heat transfer during the braking process, allowing the brake materials to produce a stable coefficient of friction (COF), which in turn reduces wear loss and braking… Click to show full abstract

Copper helps to accelerate heat transfer during the braking process, allowing the brake materials to produce a stable coefficient of friction (COF), which in turn reduces wear loss and braking noise. However, its properties are also quite harmful to aquatic organisms. Finding a suitable replacement that fits all functions of copper for brake materials is not an easy feat. In this paper, six different carbonaceous components (coke, carbon black, carbon fiber, artificial graphite, natural graphite and expanded graphite) were substituted for copper in non-asbestos organic (NAO) friction materials. The hardness, thermal conductivity and tribological behaviors of these copper-free NAO friction materials were examined. Experimental results indicate that carbonaceous components improve lubrication and assist the friction composites with generating friction layers on the worn surface. Specimens containing coke, carbon black or carbon fiber exhibit broken friction layers, whereas specimens containing artificial graphite, natural graphite or expanded graphite exhibit quite adherent and smooth friction layers. Among all the copper-free carbon containing specimens, the specimen containing expanded graphite appears to be the best choice. It has the highest thermal conductivity, a relatively low wear loss and a relatively high and stable COF.

Keywords: free nao; carbon; nao friction; friction; copper free; carbonaceous components

Journal Title: Materials
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.